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Physics Package Confidence: “ONE” vs. “1.0” (U)

D.H. Sharp,* T.C. Wallstrom,** M.M. Wood-Schultz, LANL
*T-13 and X-DO; ** T-13; 'X-2

The “reliability” of the nuclear explosive package of a stockpiled nuclear
weapon has historically been stated to be “ONE,” with the intent to
convey very high confidence that a device that was properly constructed
and that had been properly handled would perform as expected on receipt
of the appropriate arming, fusing, and firing signals. In this paper, we
report on the results of recent work clarifying the basis for assertions of
confidence when applied to high consequence systems in the context of
Quantified Metrics and Uncertainty (QMU). Previous work on QMU has
used a conservative approximation that assigns a confidence of “ONE” or
“Not ONE” for nuclear weapons. We extend QMU to a fully probabilistic
setting, in which confidence in performance can be assigned a probability
between zero and one. We use this more general formulation to examine
the assumptions underlying the more conservative model. The potential for
this work to support a quantitative evaluation of physics reliability
“beyond ONE” is also discussed. (U) .

Introduction

The problem of establishing the level of confidence that can be assigned to
assessments of the performance, safety and reliability of nuclear weapons in an evolving
stockpile is a central question in the nuclear weapons program. Various sources of
uncertainty affect assessments of weapons behavior, and a fundamental problem is to
estimate confidence in weapon performance and reliability in the light of these
uncertainties. o

The approach to confidence that has been taken historically is based on
conservative bounds on uncertainty, grounded in nuclear test results and supplemented by
scientific judgment. This has led to a binary assessment of confidence as “ONE” (we
have high enough confidence that the weapon will work properly to allow certification) or
“Not ONE” (we do not have sufficient confidence for certification). A confidence
assessment of “ONE” is thus not an assertion that the probability of some event
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(successful operation of a nuclear weapon) is 1.0. It is rather a statement that the balance
of evidence is sufficient to support certification.

A traditional approach to assigning confidence would determine the probability of
successful performance, a number p between 0 and 1. This approach is more rigorous, to
the extent that the assignment of probabilities is based on actual experimental data, and,
in principle, it gives more information, allowing for “gradation” of levels of confidence.
However, it requires knowledge of the probability distributions characterizing different
aspects of a weapon's performance, and thus places more stringent demands on data
and/or scientific judgment.

Scientific judgment has always been required to bring closure to the scientific
process and to render certification decisions tractable. For example, it was always
necessary to extend the experimental determination of weapons performance from a
limited set of tested conditions to the full set of potential deployment conditions. Very
often, a stockpiled device differed in significant ways from the devices tested for its
development, so stockpile performance was inferred from test results for a “similar” but
not identical device. In such cases, the adequacy of the data and processes used for these
extensions is ultimately a matter of judgment, and it was and is a function of technical
management to evaluate and mitigate the associated risks.

The questions that must be answered reliably to maintain confidence in the
stockpile include assessments of weapons’ behavior in circumstances where (1) aging,
engineering flaws or manufacturing defects result in stockpile devices that fail to meet
original specifications or (2) nuclear design flaws, apparent or suspected, come to light. In
addition, certification of new designs and/or new applications of existing devices could
be desired if deemed necessary for national security. Under a comprehensive test ban
(CTB), the design laboratories must attempt to answer this range of questions without
further nuclear tests. It seems likely that this can be done with the requisite confidence for
some questions but not for others. To push the envelope of what can be reliably certified
without nuclear testing as far as possible requires advances in predictive science across a
broad front including experimental, modeling and simulation capabilities.

We believe that we state the obvious in saying that the most crucial role of any
certification methodology is to clarify the choices and judgments made in deciding
whether or not to certify a device at all. The determination that a device fully meets the
weapon system military characteristics (MCs), and the predictions of the range of its
performance are qualitatively different products of the certification process. Thus while
reliability and performance are both important, they are not the same thing for a nuclear
weapon system. ‘

Because of the potential consequences of a weapon failure, a policy of strict
conservatism is usually adopted. This is implemented in part by requiring that a
certification be based on persuasive evidence that the device will work, as well as on the
absence of significant evidence that it might not work. Note that conservatism too
requires judgment in its application. Both too much conservatism and too little have their
costs.

The method of Quantified Margins and Uncertainty — QMU — has been
introduced to provide a systematic and explicit framework for explaining the scientific
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basis for confidence in assessments of the performance, safety and reliability of nuclear
weapons. QMU is a logical framework built on salient characteristics of a weapon's
performance, each of which is known as a metric, derived from an analysis of
experimental data and computer simulations. Requirements for robust operation for the
metrics are termed “gates,” and the margins of interest to QMU are the amounts by which
the metrics exceeds the requirements. Gates and margins are well suited to inform the
binary decision of whether or not to certify a weapon. That aspect of certification is
addressed here.

A key feature of QMU is the integration of the uncertainties into both the
requirements for the metrics -- the gates -- and for the metric values for real-world
systems. Consequently, QMU is sufficiently flexible that it provides a very general
framework for the analysis of confidence. The simplest formulation of QMU, here called
“interval QMU,” typically uses uniform probability distributions over a finite range of
metric values and leads to the ONE/Not ONE description of confidence. A fully
probabilistic formulation of QMU, which permits probability distributions of arbitrary
form, can be used to produce more general probabilistic estimates when the necessary
data is available. (See, for example, McLenithan, 2001 NEDPC.) Interval QMU is of
course a special case of fully probabilistic QMU. We stress that QMU is a framework for
analysis, and does not itself supply the science necessary for the evaluation of gates and
metrics. However, in calling for these quantities, and especially their uncertainties, QMU
engenders a scientific program.

In the next section, we discuss the ratlonale for QMU in greater detail. In Section
3, we briefly describe the basic ideas of QMU. In Section 4 we present the fully
probabilistic formulation of QMU. Interval QMU is discussed in Section 5. Both sections
emphasize the assumptions and approx1mat10ns underlying the two versions of QMU. We
discuss the idea of a confidence interval in Section 6. We carry the analysis further.in
Section 7 by reviewing the explicit and implicit assumptions that are made in the choice
of specific simple probability distributions. In Section 8, we touch on some issues that
would arise in applying classical statistical reliability theory to the nuclear explosives
package. Our conclusions are summarized in the final section.

2. Why QMU?

Ideally, a full description of the behavior of a nuclear weapon would be contained
in the solution of the physics equations used to model its performance. However, nuclear
weapons—perhaps the most subtle and complex of all man-made objects—are
particularly difficult to simulate. Many interesting nonlinear phenomena are operative.
The interactions occur on an extremely wide range of length scales and both fundamental
material properties and the properties of manufactured “parts” affect device operation.
Multiscale phenomena can be sometimes be handled by developing a model for the
average or aggregate effects of short length scale interactions and using it to explicitly
include the effects of the sub-grid scale phenomena in macroscopic calculations.
However, it is not possible to ensure that all of the phenomena emerging from multiple
non-linear interacting phenomena have been anticipated, so a general simulation of
nuclear weapons has been intractable in practice. Because of their unique physical regime
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of operation, many of the physical models and data used in other areas of science and
technology are not immediately applicable to nuclear weapons.

The equations and the detailed device description on which a weapons simulation
is based are for these reasons incomplete and inaccurate. In.addition, solution errors for
coupled non-linear equations are inevitable. The net result is that computed solutions are
rarely adequate for stockpile stewardship needs by themselves. This kind of situation—
needing a simulation capability which is by itself inadequate for the ultimate
application—is undoubtedly not unique to nuclear weapons. The only sure solution is to
turn to full scale testing to supplement and confirm (or not) the simulation results, but
multiple obstacles have always precluded the exhaustive—and in some cases even
adequate—testing of nuclear weapons, and the- scarcity of detailed data on nuclear
weapons operation is a pervasive problem.

The cost of a nuclear test kept the number of tests low relative to the development
needs, including experiments to directly demonstrate repeatability of performance -or
parameter sensitivities. The physics regime inside an operating nuclear weapon was itself
a major impediment to direct or detailed measurements. National policies did of course
play a major role in limiting progress in understanding nuclear weapons: first in the
transition from atmospheric to underground testing under the Limited Test-Ban Treaty
(LTBT), then to yield-limited tests under the Threshold Test-Ban Treaty (TTBT; not
ratified, but implemented by executive order), and now a functional CTB.

As opportunities to obtain directly applicable data have diminished, the nuclear
weapons community has increasingly compensated for this lack of data by the use of

“normalized simulations” in which adjustments of free parameters and/or simulation
“knobs” are used to bring calculated results into agreement with expenmental
measurements. The adequacy of such models for untested configurations, that is, their
usefulness for prediction, cannot be determined directly. Because the model predictions
provide the basis for decisions concerning both the safety and reliability of the nation’s
nuclear deterrent, some form of quality assurance is needed for the modeling and decision
processes. We believe that the balancing of requirements and uncertainty that occurs in a
valid QMU analysis provides appropriate quality assurance for this application.

QMU is far from foolproof. Some acceptance of the sufficiency of the supporting
analysis is a fact of life in any decision making process (excluding so-called *“gaming”).
The thorough application of QMU to an inappropriate or inadequate set of metrics will
not produce the desired results. Its successful application depends on correctly judging
the sufficiency of the metrics used. The equivalent statement is true for all other decision
paradigms. The value of QMU or an equivalent methodology lies in its mandate to clearly
and completely identify all pertinent assumptions and in the increased likelihood that
requirements will be dealt with consistently and scientifically.

3. Fundamentals of QMU

The quantity of information necessary to completely specify the detailed spatially
and time resolved state of the many physical variables important to the operation of a
complex system is enormous. Even when such information is available, for example as it
could be from a simulation, it is neither feasible nor useful to attempt to draw meaning
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from any significant fraction of these individual values. In practice, of course, one
integrates some or all of this high-dimensional set of information into a relatively small
number of understandable physical quantities. In QMU, a set of such quantities -- termed
“metrics” -- are used as indicators of the robustness of the system under analysis.

QMU metrics were originally conceived as key characteristics of the device at
important junctures in its operating history. We adopt a more general definition, in which
a metric for a physical system can be any quantity that depends on the physical
characteristics and state of the system and/or its operation. The set of metrics that it is
useful to consider in a QMU analysis will depend on the system and decision in question.
For example, the metrics for determining the acceptability of a new high explosive will
not be the same as the metrics for determining the minimum isotopic enrichment of a
fissile material. ’

A set of metrics might include one that summarizes a “make-or-break”
characteristic, such as the peak Pu compression in a primary or an aspect of device
performance; a quantity that characterizes a critical juncture in time, such as just pre-
boost; or a calculated or measured quantity that has been highly predictive of operational
success, such as explosion alpha in a primary.

Metrics are not generally independent. For example, a poor value for one metric
may imply, or be strongly correlated with, a poor value for another metric. And while
metrics frequently describe a weapon at different stages in its time evolution, one might
choose to describe some stages with several metrics. Metrics which characterize non-
physical, idealized states, such as a peak condition obtained without yield, are also useful.
Figure 1 illustrates the main ideas discussed below.

Upper Boundary of N ::I

designed S __nominal
operating range @ ¢ (dssign point’)
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manufacturing i,
variations) x
' -+ <¢—U = uncertainty
Gate .
designed
operating
margin value required for “100%"
confidence in
performance
\ \, /

Lower Boundary of

uncertainty in location of gate boundary

Sharp, D.H., et al.

UNCLASSIFIED




UNCLASSIFIED

Proceedings of the NEDPC 2003 , LAUR-04-nnnn

Figure 1. The main features of a performance gate are illustrated.

A corollary to the definition of a metric as a characteristic important to successful
operation is the idea that certain ranges of values for each metric represent successful
operation and others do not. We define a QMU gate as the range of metric values that is
believed to be necessary for robust operation. The conservatism intrinsic in this definition
is not essential to the QMU concept, but is considered appropriate for nuclear weapons
applications as discussed above. The modifiers “necessary” and “robust” function to
exclude any explicit indicator of risk: the sufficiency of any gate or set of gates is neither
assumed nor implied by the QMU formalism (necessary, but not sufficient), and regimes
of incipient failure (not robust) are unacceptable. We note that a gate can be one or two-
sided, depending on whether it represents a threshold or a requirement that the metric fall
between both lower and upper bounds. For simplicity, we assume that the gate has a
single, lower bound; extensions to two-sided gates are straightforward.

When used as the basis for decision-making, gates are interpreted as a set of
requirements that are sufficient to ensure that the device will work. This is an
approximation because restricting our focus to a limited set of metrics creates the risk of
neglecting other phenomena that affect device performance. It is generally not known that
the converse assumption holds, that is, that the device will definitely fail if any metric is
outside of its performance gate. However, in order to ensure that our confidence errs on
the side of conservatism, the device is assumed to fail if the metrics fall outside the
performance gate.

As discussed in the Introduction, sufﬁcwncy is not guaranteed. This is espec1a11y
obvious in weapons because our understanding of the detailed processes occurring in
their operation is incomplete. The point of that previous discussion is important enough

that it bears repeating: the question of sufficiency of a set of gates lies outside the purview

of QMU itself.

The value of the metric corresponding to the operation of a weapon under nominal
conditions is called the “design point”. A weapon is designed to operate properly over a
range of conditions (the STS), and the value of the metric may vary as a result. This set of
values, which by construction contains the design point, is termed the “operating range
(OR).”

In order for a weapon to be reliable, the OR must fit “comfortably” within the
performance gate. Margin in a metric is simply the “clearance” between the performance
gate and the OR. For example, a two-sided gate has two margins—upper and lower. We
define the margin in terms of the boundary of the OR, because we want to evaluate our
confidence relative to the extreme values of the device operating range.

If the device were completely understood and accurately modeled, any positive
value for a margin would be sufficient to ensure successful performance at a gate. In
reality, of course, there are uncertainties in both the location of the OR and the
performance gate. We describe some of these uncertainties below. The margin must be
sufficiently large compared to the uncertainties to ensure confidence in performance. This
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is of course the familiar idea of a designed “safety margin” for performance— sometimes
referred to as the “design cushion.” This idea is captured in QMU by defining a
confidence ratio, CR = M/U, and requiring M/U>1, where M and U are numbers
characterizing the margin and uncertainty. This is discussed further below.

Interval and full QMU differ in the amount of information and level of detail they
require for the useful description of the uncertainties. We discuss these formalisms next.

4. Full QMU

In full QMU, the uncertainties in the OR and performance gate boundaries are
characterized by full probability distributions. Since the gates are not independent, we
should really introduce a multivariate distribution for the entire set of gates. However, we
will restrict ourselves here to the case of a single gate.

For a one-sided lower gate, the margin M is defined as x,—x,, the difference
_ between the lower boundary of the OR, x,, and the location of the lower performance
gate, x,. We assume that the distributions of x, and x, are independent. This

_ assumption is almost surely not strictly true, especially as concerns the mean of the
distribution. However, it may be a sufficiently good approximation when calculating the
difference x,-x,. Once we have assigned distributions to x, and x,, we need only

convolve these distributions to calculate the distribution of the margin. (McLenithan,
NEDPEC 2001.) We illustrate this procedure with two simple examples.

Gaussian Case ;
Assuming x, and x, are independent, the density of M is given by:

fu®) = [f(z-0)f,2)dz

where f is the density function of the corresponding random variable (¥, x,, or x, ).
If x, is normal with mean and variance u, and o}, and similarly for x,, then M
is normal with mean 4, — 4, and variance o, =0, + 07, by elementary properties of the

Gaussian. The fact that the squares of the uncertainties add, rather than the uncertainties
themselves, leads to a smaller uncertainty for M, and reflects the fact that uncertainties in
the gate and the operating range will tend to cancel, to the degree they are independent.

If 0,>0 and o,—>0, then g, >0, and f,, becomes a Dirac & -function

centered at u, — 1, . We thereby recover a “deterministic” expression for M.

Rectangular Case

In this case, f,(x)=1/(2h), if -h<x—p,<h and zero elsewhere, and
analogously for f,, with k replacing 4 and u, replacing 4, . We assume that h<k; if h>k
then the following result is valid if 4 and & are interchanged. Performing the convolution,
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we obtain a trapezoidal distribution function for M:
1/(2k) || <k—nh
@) =3 ((k+h)—|E)/dhk  k-h<|é|<k+h
0 elsewhere

where & =x—(u,— 4,). If h=k the distribution is triangular. As # — 0, corresponding to

zero uncertainty in either the gate or the OR, the distribution becomes rectangular. If one
quantifies the uncertainties by the root-mean-square error, one finds, as in the Gaussian
case, that the uncertainties are subadditive, because of error cancellation.

5. Interval QMU

In interval QMU, the uncertainty in the lower boundary of the operating range is
characterized by a single number, U,, and the uncertainty of the performance gate is
characterized by a second number U, . The interpretation of these uncertainties is that we
are “nearly certain” that the true value does not differ from the mean value x by an
amount greater than U. In other words, we are asserting that, to a good approximation, the
support of the distribution is [x -U,x+U ] (The support of a function is the set on which
it is nonzero.)

The interpretation of the uncertainty in M as the support of its distribution implies
that when adding (or subtracting) random variables, we should add their uncertainties. If
x, and x_ are supported in intervals u U, and u, +U,, then M will be supported in

the interval (4, —,)+(U, +U,). This is a conservative, worst-case, assumption, which

assumes that there will be no error cancellation, or equivalently, that the errors are
completely correlated.

_ To treat Gaussian distributions, which have support on the entire real line (infinite
support), within the framework of Interval QMU we must approximate the Gaussian by a
distribution having compact support. We do this by using the uncertainty as given by full
QMU to define an effective uncertainty for Interval QMU. For example, we could define
the support of the distribution by the limits of the 90% confidence interval for Gaussian
distributions. For the case of a rectangular distribution, the uncertainties in x, and x, are
h and k, and the uncertainty in M is h+k. In any case, the uncertainties add, so Interval
QMU will lead to higher uncertainty estimates than Full QMU.

6. Confidence Ratio

In principle the margin, considered as a random variable, contains all statistical
information about whether the design point will fall within the performance gate. We
write M, for the ath quantile of M, ie., the value of M that will be exceeded

100(1—-a) % of the time. By adjusting the value of &, one can impose any desired degree
of confidence on the system, simply by requiring that M, >0.
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In practice, however, one is often not sure about the shape of the distribution,
particularly in the region of the tails. For this reason, the more conservative method of
ensuring confidence via a Confidence Ratio (CR) is used. Using M for the mean value of
the margin, and letting U be some estimate of the magnitude of the central region of the

distribution, the confidence ratio (CR) can be defined as M /U . If the confidence ratio is
large, then we have high confidence that the uncertainty is less than the mean margin, so
that the actual margin will very probably be greater than zero.

As an alternative, therefore, to requiring that M, be greater than 0, for some
small &, we could require that CR be greater than y, for some y >1. As « gets smaller,
or y gets larger, we would gain more confidence. The advantage of using y is that it

depends mainly on the central portion of the distribution, whereas « is sensitive to small
changes in the tails. ‘

A concrete definition applicable for the case of Full QMU is U, =M — M, and
CR, =M /U, If we require that CR, ,, > 1, then we are requiring a 95% probability that

M is greater than zero. If we require that CR,,; > ¥, where ¥ is greater than one, then we

are requiring a correspondingly higher degree of confidence that M is greater than zero,
although we cannot determine the probability exactly without making potentially
questionable assumptions about the probability distribution of M. Qualitatively, however,
we can say that if the tail falls off quickly, then a value of y that is only a little greater

than one should lead to high confidence; if it falls off slowly, then it is prudent to require
a larger value of y.

For the case of Interval QMU we take U to be the half-width of the support, and

M to be the midpoint of the support. If we interpret the distribution literally, then the
probability that M<0 is zero if the CR>1. However, it is still a good idea to insist that
CR> 1, because the assumption of zero probability outside the support of the distribution
is an idealization that may not be valid in practice.

The preceding discussion provides some insight into the meaning of the numerical
value of the CR, in that different values of the CR reflect different assumptions about
properties of the relevant probability distributions. We emphasize that confidence in
successful device operation requires successful performance at each gate. Lack of
independence of the basic quantities defining the various gates precludes defining a single
confidence ratio for overall system performance by any simple recipe. Instead we adopt a
“weakest-link-in-the-chain” strategy, and take a CR<1 at any gate as a signal of possible
system failure (reliability Not ONE), and the requirement CR>1 for every gate as an
indicator of robust performance (reliability = ONE). This is consistent with the

conservative ONE/Not ONE binary assignment of confidence that has been used

historically.

7. Determining the Probability Distribution for Full QMU

As stated above, the successful use of full QMU at a specific gate requires
knowledge of the probability density functions (PDFs) for the limiting metric value and
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for the gate itself. The determination of the PDFs is therefore extremely important, but
for nuclear weapons, it is typically extremely complex and difficult. Detailed uncertainty

-analyses that may lead to PDFs have been undertaken in several important weapons areas,
such as pit radiography. Each of these endeavors is both a significant and unique
undertaking. However, some simple observations based on the defining requirements and
the overall context of predictive capability for nuclear weapons follow fairly directly.

As a rule, the determination of the operating range and the location of the
boundaries of performance gates will use both experimental data for real devices as well
as simulation results for these devices. These determinations will typically reflect
uncertainties in the measured data and in the simulations. Errors in the latter have several
sources: (i) input error, including database errors; (ii) solution errors, which arise from
deficiencies in numerical methods; and (iii) modeling errors (errors in the physics

equations). Unfortunately, the various kinds of errors are often intertwined. So while in -

practice, simulations inevitably reflect experimental errors in input data (e.g., EOS),
utilizing experimental data often requires model-based inference, and so reflects
modeling error as well as the measurement errors themselves.

The most important part of any uncertainty analysis is a careful study of the
potential sources of error based on a scientific understanding of the operation of the
experimental measuring instrument or the simulation code. This is particularly important
when systematic errors are the issue, as is frequently the case in both experiments and
simulations, because systematic errors are difficult, if not impossible, to estimate using
statistical methods alone.

A sufficiently large sample of data points enables a good model for the
distribution through fitting to a familiar parametric distribution or to an empirical
distribution. If measured data is not available, one alternative is to generate simulated
data for a “closely” related problem and then evaluate its applicability to the problem of
interest. In many cases, however, few applicable data -- real or synthetic — will be
available, and an estimated for the PDF can only be based on largely qualitative insights.

We mention two potentially useful techniques: Maximum Entropy, and optimal
estimates of the mean. If The Maximum Entropy method requires knowledge of the
moments or range of the distribution, which may be available on theoretical grounds in
certain applications. When such information is available, the Maximum Entropy
distribution may be obtained by maximizing the continuous entropysubject to the
constraints. The Maximum Entropy distribution can be used as a starting point, or prior,
for Bayesian Inference, when measurement data is also available.

The second technique infers the distribution from a given method for estimating
the mean. Common examples are: as an average of all measurements, as a weighted
average in which the “outliers” are given reduced weight, as the average of the extreme
observations, and as the median. For a specific problem, an analyst may use physics
reasoning to supports the choice of one method of estimating the mean over another.
Gauss showed that if one assumes that the chosen form corresponds to an unbiased
estimate, then the form of the distribution is actually largely determined by this choice.
This means that any method for estimating the mean entails an implicit assumption about
the form of the distribution. The first three methods, for example, correspond to a
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Gaussian distribution, a fat-tailed distribution, such as a ¢ distribution, and a rectangular
distribution (thin-tailed). It is invariably easier to find intuitive justification for a method
of estimating the mean than to produce a direct intuitive argument for the distribution
itself, and it is fortunate that this window into the form of the distribution can be so
directly exploited.

Except in cases where the probability of satisfying the gate requirement is low, the
probability of interest is determined by integration over one or more tails of the PDFs.
The tail of the distribution is most affected by inaccuracies in either the form or the
distribution parameters, e.g. the variance of the PDF. The confidence ratio is crucial in
full QMU to provide compensation for these inaccuracies. The aspect of a PDF most
important to the effects of the tails is its “kurtosis,” which characterizes the degree.to
which the tails are thin or thick. Although the above methods do.not always yield
quantitative answers, they should often be able to tell us qualitatively whether the kurtosis
is large or small, and this may be more than adequate for setting the confidence ratio. If
no practical approach can be convincingly justified, then full QMU cannot provide the
basis for a high confidence decision concerning the problem being considered.

We place considerable stress on the need for rigor and conservatism in the
determination of probability distributions for use in QMU. The reason is that conclusions
can be very sensitive to the choice of dlstnbutlons (or its parameters); an incorrect choice
can lead to disastrously wrong answers.

8. QMU and Reliability

Classical statistical reliability theory (Barlow & Proshan) deals with two main
concepts: (i) “Reliability” — the probability that a device will perform properly for the
period of time intended under the operating conditions encountered and (ii) “Pointwise
availability” — the probability that a device will operate to specifications at a specific
time. These concepts are used to describe both component reliability and the overall
reliability of a system consisting of multiple components. An associated idea that plays a
prominent role is the probability of component or device failure, and also the rate of
change of these probabilities of failure.

Here we discuss these ideas in a QMU framework. The metric at a gate, which
usually refers to a process rather than to the state of a piece of hardware, is the analogue
of a “component”. Pointwise availability thus corresponds to the probability of successful
performance at a gate — this is P(m>0). The probability of failure
P(m <0)=1-P(m>0). Given the preceding discussion of the role of the tails of the
distribution in full QMU, it is evident that the probability of failure requires knowledge of
P(m) where it is least likely to be known accurately. '

Some time dependence of P(m) can be expected due to aging effects, both
expected, such as aging of gas, and unexpected where chemical and/or environmental
effects occurring during a device’s tenure in the nuclear stockpile result in out-of-.
specification conditions.

In many applications, the probability of device failure as a function of time is
obtained by direct observation of the frequency of occurrence of component or system
failure. This is not a feasible approach for a nuclear explosive package. Instead, the
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surveillance program seeks to observe the frequency of out-of-specification conditions,
but relating the conditions to the probability of failure requires a significant model-based
inference. '

Any estimate of system reliability depends first and foremost on an understanding
of system failure modes, which is obviously a very important thing to study no matter
how one intends to use the results.

Inferring the reliability of a complex system has always been a key part of the
field; an early example is the Moore-Shannon theorem relating the reliability of a multi-
component relay circuit to that of its individual components. Using system reliability
results in the QMU framework in principle requires the determination of the conditional
probabilities relating metrics at gates N and N-/. In nuclear weapons, this information is
not readily available. Sufficient data exist that it may be available from observations in
robust regimes of operation, but not in the problematic failure, or near-failure, regimes.
The most direct alternative would be to use a model to derive the required conditional
probabilities between gates. (The dilemma is that the regime where QMU is most needed
as a safety net for conclusions drawn from inaccurate simulations is precisely where the
weapon model falsely predicts acceptable behavior.) An approach often used in
analyzing relay circuits is to impose a binary on/off state for relay operations. Such a
“lumped” description-avoids dependence on a detailed physical model of a relay. Iz a
weapon, however, the specific value of metrics at different gates will usually be
important. Because these values depend crucially on the behavior of the system upstream
to the gate in question, a lumped model of the dynamics is not useful, except perhaps for
order of magnitude estimates.

It is worthwhile to ask how accurately one needs to know the PDF's that come into
play in reliability theory in order to produce estimates that are sufficient for certification
purposes. This question deserves careful study. We make two simple observations here.

First, concerning the determination of the needed PDFs, the best hope is to
concentrate on the “central” region of the distribution, corresponding to a regime of
robust operation. This aligns with the refurbishment strategy of maintaining the device in
a condition where the existing performance data were collected. It also illustrates the
reasonableness of the traditional use of interval PDFs in certification.

Second, some very worthwhile aspects of reliability analysis do not depend
sensitively on details of the probability distributions. As commented above, a first step in
the analysis -of system reliability is usually a careful analysis of failure modes and their
effects. Likewise, powerful results in reliability theory sometimes follow from a
knowledge of the mean of the distribution and general assumptions, such as monotonicity
of the probability of failure, that are frequently applicable. Explorations of such
approaches in analyzing the reliability of the nuclear explosives package appear
worthwhile; these methods typically lead to reliability bounds.

Progress in implementing the approaches mentioned in the above two paragraphs
should clarify the scientific basis for the ONE/Not ONE characterization of reliability.
They can be expected to confirm that this characterization of reliability is based on some
hard facts of life. Going “beyond ONE” to a numerical estimate of reliability based on
knowledge of full probability distributions in conjunction with QMU would place great
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demands on our ability to characterize uncertainties. In view of this, it is inevitable that
there would be pressure to adopt “short cuts” by simply assuming the forms of PDFs or
using PDFs that are not based on some but inadequate supporting data. The response to
such pressure would make or break nuclear certification. No analysis that is based on
speculation or that neglects significant possibilities can lead to genuine confidence, but
instead will frequently lead to over-confidence or under-confidence, both of which carry
severe costs. '

Armr——_

9. Summary and Comments

We have presented two ways of formulating QMU that we have termed “Interval”,
and “Full.” The difference between the two formalisms stems solely from the restriction
of the PDFs representing the probability distributions for the values of a metric fer a
given device configuration and for the limits of a gate to those with non-zero values for a
single finite interval in Interval QMU. The use of either formulation requires
approximations and scientific judgment. However, fully probabilistic analyses require
knowledge of uncertainties that as a rule can be expected to be difficult to obtain.

“ONE/Not ONE” estimates of reliability are consistent with historical practice,
and both are a response to the very limited availability of detailed uncertainty
information. Extending this class of estimates to current and future stockpile questions is
itself a significant challenge.

The US nuclear weapons community is just beginning to explore where QMU can
be useful. The emphasis in QMU on characterization of uncertainties is essential for
determining which stockpile questions can be answered with confidence using the data
- and simulation capabilities that are available at any given time. Improvements in
predictive science may allow improved estimates of uncertainties, and potentially may
also allow them to be reduced. This would affect the scope of questions that can be dealt
with successfully, but significant limitations are expected to remain. Identifying these
limits is an important task of the nuclear weapons program.

We submit that when carefully applied, QMU can improve our basis for assessing
the reliability of stockpile decisions. '
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